ЛО́ГІКА ВЫКА́ЗВАННЯЎ,

прапазіцыянальная логіка, раздзел логікі, у якім вывучаюцца лагічныя сувязі паміж простымі і складанымі выказваннямі. Простае (атамарнае) выказванне не ўключае ў сябе іншыя выказванні і разглядаецца як пераменная, якая прымае або ісціннае, або няісціннае значэнне. Канкрэтны змест і ўнутр. структура выказванняў пры гэтым не разглядаюцца. Складанае выказванне складваецца з іншых выказванняў пры дапамозе ўзаемазвязаных лагічных (прапазіцыянальных) звязак. Так, злучэнне двух выказванняў з дапамогай звязкі «і» дае складанае выказванне (кан’юнкцыю), якое з’яўляецца ісцінным, толькі калі абодва гэтыя выказванні ісцінныя. Складанае выказванне, утворанае з дапамогай звязкі «або» (дыз’юнкцыя), ісціннае, калі хаця б адно з гэтых двух выказванняў ісціннае. Складанае выказванне, утворанае з дапамогай «не» (адмаўленне), ісціннае, калі толькі зыходнае выказванне няісціннае. Складанае выказванне, атрыманае з двух выказванняў з дапамогай звязкі «калі, то» (імплікацыя), ісціннае ў 3 выпадках: абодва гэтыя выказванні ісцінныя, абодва яны няісцінныя; першае з выказванняў (за словам «калі») няісціннае, а другое (за словам «то») ісціннае, імплікацыя з’яўляецца няісціннай, толькі калі першае з яе выказванняў ісціннае, а другое няісціннае. Мова Л.в. уключае бясконцае мноства пераменных (P, g, r, ... Pi, gi, ri, якія ўяўляюць сабой выказванні), і асаблівыя сімвалы для лагічных звязак: & — кан’юнкцыя («і»), ∨ — дыз’юнкцыя («або»), ¬ — адмаўленне («не» або «няправільна, што»), → — імплікацыя («калі, то»), ↔ — эквівалентнасць («калі і толькі калі»). Л.в. можа быць прадстаўлена таксама ў форме лагічнага злічэння, у якім задаецца спосаб доказу некаторых выказванняў.

Літ.:

Жуков Н.И. Философские основания математики. 2 изд. Мн., 1990;

Брюшинкин В.Н. Практический курс логики для гуманитариев. М., 1996.

В.В.Краснова.

т. 9, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)